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Abstract. In the past decade, lead halide perovskites have emerged as potential optoelectronic materials in
the fields of light-emitting diode, solar cell, photodetector, and laser, due to their low-cost synthesis method,
tunable bandgap, high quantum yield, large absorption, gain coefficient, and low trap-state densities. In this
review, we present a comprehensive discussion of lead halide perovskite applications, with an emphasis on
recent advances in synthetic strategies, morphology control, and lasing performance. In particular, the synthetic
strategies of solution and vapor progress and the morphology control of perovskite nanocrystals are reviewed.
Furthermore, we systematically discuss the latest development of perovskite laser with various fundamental
performances, which are highly dependent on the dimension and size of nanocrystals. Finally, considering
current challenges and perspectives on the development of lead halide perovskite nanocrystals, we
provide an outlook on achieving high-quality lead perovskite lasers and expanding their practical applications.
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1 Introduction
Research related to perovskites can be traced back to 1970s,1–3

but systematic research was lacking due to technology limita-
tions in that period. In 2009, Kojima et al.4 first added organic–
inorganic hybrid perovskites as semiconductor materials in
dye-sensitized solar cells, achieving a power conversion effi-
ciency (PCE) of 3.8%. Since that breakthrough, the development
of perovskites with large absorption coefficient, low defect state
density, long carrier diffusion length, and bipolar carrier transport
property has made them uniquely suitable for photovoltaic
applications.4–16 Currently, the PCE of single-junction pure per-
ovskite-based solar cells has reached 25.5% for small-area
devices and 24.2% for large area over 1 cm2.15,17 According to
the Shockley–Queisser limit, a type of high-quality conversion

material in solar cells is also efficient luminescent materials in
light-emitting devices such as LEDs and lasers.18–20 In 2004,
the first evidence of optical gain in lead halide perovskites was
reported, which is amplified spontaneous emission (ASE) from
microcrystalline films of CsPbCl3 recrystallized from the amor-
phous phase.21,22 In 2014, ASE and lasing were realized from
MAPbX3 polycrystalline thin films at room temperature. Ultralow
threshold could benefit from the excellent optical absorption of
MAPbX3 with a coefficient greater than 2 × 104 cm−1.23–27

In addition, the research about micro/nanolasers based on
perovskite with high coherence, low threshold, and high-quality
factor has increased rapidly. The advances in lasing performance
mainly benefit from the excellent optical properties such as high
photoluminescence quantum yield (PLQY), narrow linewidth,
large absorption coefficient, and widely tuned band.28–32 In ad-
dition, the shape and size of perovskite could be flexibly adjusted,
which can affect their physical and chemical properties and
the performance of optoelectrical devices.33–36 Hence, various
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synthesis strategies about the fabrication, control of morpholo-
gies, and sizes of perovskite nanocrystals (NCs) have been de-
veloped. The size can be adjusted from several nanometers to
microns, and the morphologies can be controlled as zero-dimen-
sion (0D) quantum dots (QDs), one-dimensional (1D) nanorods
(NRs) and nanowires (NWs), two-dimensional (2D) nanoplates
(NPs) and nanosheets (NSs), and three-dimensional (3D) nano-
cubes and microspheres (MSs).37–42 In this review, we discuss
and summarize the recent developments in lead halide perov-
skite materials and perovskite-based lasers. In particular, the
synthetic strategies of the perovskite containing solution pro-
cess and vapor evaporation method are reviewed. Moreover, the
morphology control of perovskite with various dimensions for
the natural resonant cavities of lasing is discussed. Based on the
perovskite QDs, NWs, NRs, NPs, and MSs, the single perov-
skite nano/microlaser and laser array are reviewed, and the
dependence of laser performance on structure morphology is
discussed. Finally, we present a summary and the perspectives
of future research in the perovskite-based laser.

2 Morphology Control of Perovskite NCs

2.1 Structure of Perovskite

As a kind of chemical material with an ABX3-type structure
[Fig. 1(a)], the crystal structure of perovskite is the same as
calcium titanate (CaTiO3).

43 “A” could be an organic molecular
group such as methylamino (MA) or an inorganic element
such as cesium (Cs); “B” is generally a metal ion, such as lead
(Pb), tin (Sn), and bismuth (Bi); “X” refers to a halide ion con-
taining Cl, Br, and I. The tolerance factor (t) is generally used to
evaluate the structural formability and stability, calculated as
t ¼ ðrA þ rXÞ∕

ffiffiffi

2
p ðrB þ rXÞ, where rA, rB, and rX are ionic

radii of A, B, and X sites, respectively. Li et al.45 introduced
the “octahedral factor” (μ) to investigate the regularities of
formability for cubic perovskite ABX3, which was defined
as μ ¼ rB∕rX and suggested the formation of the halide
perovskites under the conditions of 0.813 < t < 1.107 and
0.377 < μ < 0.895. Then, Sun et al. introduced ðtþ μÞη to
evaluate the thermodynamic stability of hailde perovskite,
where η is the atomic packing fraction in a crystal structure.
By calculating decomposition energies of 138 perovskite
compounds [Fig. 1(b)], they demonstrated better accuracy of
ðtþ μÞη than the evaluation of t and μ alone.44,46

2.2 Perovskite Quantum Dots

Based on the ABX3 halide perovskites, the morphologies can be
controlled with different dimensional nanostructures, such as
0D QDs, 1D NWs, 2D NPs, and 3DMSs.37,40,47–65 Since different
nanostructures will result in variable structure–property relation-
ships at the nanoscale level, various strategies have been
reported for controlling the form and size of the perovskite
NCs, including changing the reaction temperature, the reaction
time, and the ligand combinations during synthesis.37–42 In ad-
dition, capping ligands with different structures and lengths can
also affect the nucleation and growth rate, hence the structure of
perovskite NCs can be adjusted owing to their anchoring and
steric effects.47–49

As is well known, traditional semiconductor QDs have a
quantum size effect. In the case of perovskite QDs, the bandgap
can also be tuned via halide component regulation.38–42,51 Zhang
et al.25 developed a ligand-assisted reprecipitation (LARP)
method to fabricate MAPbBr3 QDs at room temperature. Their
PLQYs were up to ∼70% [Fig. 2(a)]. By mixing PbX2 salts into

Fig. 1 (a) Structural model of metal lead perovskites. Figures reproduced from Ref. 43. (b) The
ðt ; μÞ map for 138 perovskite compounds. Figures reproduced from Ref. 44. (c) Nanoscale
morphologies of halide perovskites.
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the precursors, the authors tuned emission in the range of 407 to
734 nm [Figs. 2(c) and 2(d)].25 In the case of all-inorganic ones,
the emission spectra of CsPbX3 QDs fabricated by the high
temperature method could be tunable over 410 to 700 nm with
narrow half maximum of 12 to 42 nm and radiative lifetime of
1 to 29 ns [Figs. 2(e) and 2(f)].42 Subsequently, they proposed
an anion-exchange process to tune the emission of colloidal
CsPbX3 QDs via postsynthetic reactions with different com-
pounds [Figs. 2(g) and 2(h)].41 Besides the hot-injection tech-
nique, the room-temperature synthesis for perovskite QDs was
also studied.39 In 2016, Zeng and coworkers developed a room-
temperature method to fabricate CsPbX3 QDs via supersatu-
rated recrystallization. In this process, the crystallization process
occurred in the transform of Csþ, Pb2þ, and X− ions from solu-
ble to insoluble solvents in the absence of inert gas within a few

seconds, as shown in Figs. 2(i) and 2(j).39 Although crystallized
at room temperature, these CsPbX3 QDs held superior optical
properties with PLQYs above 70%, and PLs can remain at ∼90%
after aging 30 days in the air. Except for being regulated by
changing composition, the bandgap of perovskite QDs also can
be tuned by the size regulation of QDs. Chen et al.66 fabricated
CsPbBr3 QDs with an average diameter from 7.1 to 12.3 nm by
modifying the temperature, and the corresponding PL emission
peaks could be tuned from 493 to 531 nm. Fang et al.67 syn-
thesized MAPbBr3 QDs with tunable average diameter from
2.82 to 5.29 nm by varying the additive amount of surfactant, and
the corresponding PL emission peaks could shift from 436 to
520 nm due to the quantum confinement effect. Most recently,
there have been much more researches about perovskite QDs by
composition engineering for wider optoelectronic applications.68–70

Fig. 2 (a) Schematic of LARP technique. Figures reproduced from Ref. 25. (b) Schematic of pre-
cursor and optical image of MAPbBr3 solution. Figures reproduced from Ref. 25. (c) Optical im-
ages of MAPbX3 solution under natural light and under 365 nm excitation. Figures reproduced
from Ref. 25. (d) PL spectra of MAPbX3 QDs. Figures reproduced from Ref. 25. (e) PL optical
images and PL spectra of CsPbX3 QDs. Figures reproduced from Ref. 42. (f) Time-resolved
PL decays for CsPbX3 QDs. Figures reproduced from Ref. 42. (g) Schematic of the anion-
exchange of CsPbX3. Figures reproduced from Ref. 41. (h) TEM images of CsPbX3 QDs with
various PL. Figures reproduced from Ref. 41. (i) Schematic of room-temperature fabrication
of CsPbX3 QDs. Figures reproduced from Ref. 39. (j) Optical images of CsPbX3 QDs after the
addition of precursor ion solutions for 3 s. Figures reproduced from Ref. 39.
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2.3 Perovskite Nanowires and Nanorods

Perovskite 1D NWs and NRs are more applicable in the field of
optoelectronic applications due to their special anisotropic struc-
tures. In the growth of 1D perovskite structures, reaction tem-
perature, reaction time, and organic ligands are critical factors
for crystallization.71–74 Deng et al.71 first fabricated MAPbI3
NWs via the one-step solution method. In this process, the pre-
cursor solution containing PbI2 and CH3NH3Iwas dropped onto
a substrate and then heated at different temperatures. Finally,
uniform MAPbI3 NWs were obtained after heating at 80°C
for 10 min. In 2017, they fabricated CsxðMAÞ1−xPbI3 NWs
through a two-step solution method.72 As shown in Fig. 3(a),
PbI2 powder was dissolved in water at 75°C initially, then
PbI2 separated out when the solution cooled down to room tem-
perature. With the addition of CsI and MAI, perovskite NWs
could be formed after shaking for a few seconds. The length
and diameter of obtained perovskite NWs could reach 10 μm
and several hundred nanometers. Moreover, the amount of per-
ovskite NWs was related to the concentration of PbI2 separated
out from aqueous solution.72 Zhu et al. developed a direct con-
version of MAPbI3 film into NWs through a recrystallization
process [Fig. 3(b)]. The first step was the formation of perov-
skite film from a mixture of PbCl2 and CH3NH3I.

73 Then, a mix-
ture solution containing DMF and isopropyl was dropped onto
the as-grown perovskite film. Along with the evaporation of the
solvent, NWs could be formed [Fig. 3(b)].73 Furthermore, they
found the content of DMF in isopropyl, and the rotation speed
could affect the sizes of prepared MAPbI3 NWs.

As for all-inorganic perovskite, in 2015, Yang and coworkers
used a solution method to synthesize single-crystalline CsPbX3

NWs first. The reaction temperature was set as 150°C to
250°C.51 They found that the reaction time was critical to the
growth of NWs. As shown in Fig. 3(c), the SEM of prepared
CsPbBr3 with different reaction times showed perovskite nano-
cubes formed initially, then NS and NW formed at 90 min
[Fig. 3(c)].51 In the formation of Cs-based perovskite NWs, sur-
face ligands could affect the width and size. Imran et al.56 tuned
the width of CsPbX3 NWs from 10 to 20 nm by regulating the
ratio of octylamine to oleylamine and varying the reaction time.
They found that the width of NWs can be decreased below

∼5 nm by introducing carboxylic acids with short aliphatic
chains. Correspondingly, the emission spectra of CsPbBr3 NWs
could be tuned from 524 to 473 nm [Fig. 3(d)].56 Amgar et al.58

found that various hydrohalic acids (HX, X = Cl, Br, and I)
affect the length of CsPbBr3 NWs efficiently. With the increas-
ing amount of HX, the length of NWs would be shortened
[Fig. 3(e)]. Using this method, the emission of the CsPbBr3
NWs could be tunable in the range of 423 to 505 nm
[Fig. 3(f)].58 CsPbBr3 NWs/NRs can also be synthesized by
a low-temperature method. Dong’s group74 fabricated CsPbBr3
perovskite NRs with controllable size in a polymer matrix.
Then, Liu et al. fabricated single-crystalline CsPbBr3 NWs
without inert gas at room temperature. By increasing the reac-
tion time, the length of NWs could be increased from nano-
meters to micrometers, and the diameter could be tuned from
2.5 to 32.0 nm. Moreover, using this method, the emission spec-
tra of CsPbX3 NWs could be tuned from 434 to 681 nm.57

Besides the above-mentioned solution-process, plenty of
works have been reported on synthesizing perovskite NWs and
NRs by vapor-phase growth.49 More than ever, the vapor-phase
process can control the morphology and crystalline phase of per-
ovskite NCs efficiently. It has been demonstrated that the growth
temperature and the substrates are critical for the orientation of
perovskite NWs in vapor-growth. Xing et al.49 first used the
vapor-phase technique to fabricate perovskite NWs. First, PbI2
NWs were deposited on SiO2 substrates by the chemical vapor
deposition (CVD) method [Fig. 4(a)].49 Consequently, PbI2 was
converted into MAPbX3 after the reaction with MAX through a
CVD process. As shown in Fig. 4(b), the preparedMAPbI3 wires
had a length about tens of micrometers and a diameter of
∼500 nm. In Figs. 4(c) and 4(d), they indicated that MAPbI3
NW grows along the [100] direction.49 Due to the thermal decom-
position of organic hybrid perovskite occurring easily at high
temperatures, direct vapor–phase growth of hybrid perovskites
is more challenging. However, the vapor–phase technique is an
attractive method for all-inorganic perovskites, which have better
thermostability. Zhou et al.75 prepared CsPbX3 NRs with high
crystallization quality and regular triangular morphology through
a vapor deposition method [Fig. 4(e)]. As shown in the SEM
image [Fig. 4(f)], prepared CsPbX3 NRs had a triangular cross
section, smooth surfaces, and a length of 2 to 20 μm. They

Fig. 3 (a) Schematic of the fabrication process for the Csx ðCH3NH3Þ1−xPbI3 NWs. Figures repro-
duced from Ref. 72. (b) Schematic of the formation of the MAPbI3 NWs by recrystallization process.
Figures reproduced from Ref. 73. (c) TEM images of as-grown CsPbBr3 NCs with increasing times.
Figures reproduced from Ref. 51. (d) Absorption and PL spectra of CsPbBr3 NWs. Figures repro-
duced fromRef. 56. (e) Schematic of the passivation effect by HX on the length of CsPbX3 NWs and
TEM images of the synthesized CsPbX3 NWs. Figures reproduced from Ref. 58. (f) Normalized
absorption, PL spectra, and photographs of CsPbX3 NWs. Figures reproduced from Ref. 58.
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demonstrated that the reaction temperature was critical for the
control of perovskite NCs during the growth of triangular
CsPbBr3 NRs. Moreover, the emission of these as-grown
CsPbX3 NRs also can be tuned from 415 to 673 nm by halide
component regulation [Fig. 4(g)].75

In addition, it has been confirmed that the substrate can affect
the grain orientation growth of perovskite NWs.76 Chen et al.62

fabricated CsPbX3 wires on mica by the CVD method. During
the growth of CsPbBr3 NWs, heteroepitaxial matching occurred
in the interface between CsPbBr3 NCs and mica substrate. Then,
the formation of NWs was caused by the asymmetric lattice mis-
match with the mica substrate. As shown in Figs. 4(h) and 4(i),
the obtained CsPbBr3 wires were well-aligned, surface-bound,
and formed a network with a length about tens of μm and width
of ∼1 μm, respectively.62 Moreover, various nanostructures
could be formed by controlling the deposition time, such as
single NWs, Y-shaped branches, and interconnected NW or
MW networks.62

2.4 2D Metal Halide Perovskite Nano/Microstructures

2.4.1 Perovskite nano/microplates

The unique and excellent properties of 2D structured perovskite
such as NSs, NPs, and microdisks (MDs) make them promising
for potential optoelectronic devices.77 Sichert et al.61 synthesized
MAPbBr3 NPs and investigated the quantum size effect of NPs
via the solution method. They found that the thickness of
MAPbBr3 NPs was reduced with the increase of the content
of OA [Figs. 5(a) and 5(b)]. Correspondingly, the PL emission
was tuned from the green to violet region [Fig. 5(c)].61 Qin et al.
prepared MAPbI3 NPs via a two-step solution method. First,
PbI2∕DMF solvent was spin-coated onto a substrate to form
PbI2 thin films. Then, the formed PbI2 thin film was immersed
into MAI solution, in whichMAPbI3 single NCs were formed.81

CsPbBr3 NPs were prepared by Bekenstein et al.37 through
a hot-injection method. They demonstrated that the reaction
temperature is critical for the shape and thickness of CsPbBr3
NPs. As the temperature decreased from 150°C to 130°C,
the shape of CsPbBr3 NCs evolved from nanocubes to NPs.
Correspondingly, the PL emission was shifted from 512 to
405 nm [Figs. 5(d) and 5(e)].37 When the temperature decreased
to 90°C and 100°C, the thin CsPbBr3 NPs were obtained with
lengths of about 200 to 300 nm [Fig. 5(d)].37 Except for the re-
action temperature, surface ligands also affect the formation of
CsPbX3 NPs, which was demonstrated by Pan et al. in 2016.
During the growth of NPs, CsPbX3 NPs were obtained at a
relatively lower reaction temperature (120°C to 140°C). They
obtained thinner CsPbX3 NPs with shorter chain amines.82 In
addition, the reaction time was also found to be critical for
the formation of perovskite NPs.78,79 By adding the PbBr2 con-
centration and increasing the reaction time above 1 h (135°C),
a CsPb2Br5 microplate (MP) with a micrometer order size and
regular end faces could be obtained [Fig. 5(f)].78 In 2018, Li et al.
demonstrated that 2D CsPbX3 NPs and NSs can be obtained by
varying the reaction time [Fig. 5(g)]. The thickness can be con-
trolled in the range of 3 to 6 nm and the width in the range of
0.1 to 1 μm.79 Huang et al. reported a method for spontaneous
crystallization of perovskite NCs in nonpolar organic solvent by
mixing precursor ligand complexes without any heat treatment.
By varying the ratio of monovalent to Pb2þ cation–ligand com-
plexes, the shape of the NCs can be controlled from 3D nano-
cubes to 2D nanoplatelets.83

Similar to the NWs, perovskite NPs can also be formed by
the vapor synthesis method. Xiong and coworkers80 reported the
CVD growth ofMAPbI3 NPs. These NPs exhibited triangular or
hexagonal platelet shapes, with thickness of 10 to 300 nm and
lateral dimensions of 5 to 30 μm [Figs. 5(h) and 5(i)]. PbX2

platelets were first grown on mica via van der Waals epitaxy and
then converted to MAPbX3 NPs with the existence of MAX. In

Fig. 4 (a) SEM image of PbI2 NWs. Figures reproduced from Ref. 49. (b) Optical microscopy
image of MAPbI3 NWs. Figures reproduced from Ref. 49. Structure simulation images of
(c) PbI2 NW and (d) MAPbI3 NW. Figures reproduced from Ref. 49. (e) Schematic of the CsPbX3

triangular micro/NRs. Figures reproduced from Ref. 75. (f) SEM image of CsPbBr3 triangular rods.
Figures reproduced from Ref. 75. (g) Real-color image and PL spectra of CsPbX3 triangular rods.
Figures reproduced from Ref. 75. (h), (i) SEM images of the CsPbBr3 NWs. Figures reproduced
from Ref. 62.
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2016, Bao and coworkers developed a combined method con-
taining a solution process and a vapor-phase conversion process
to prepare MAPbI3 NSs. First, PbI2 flakes were dropped on a
silica substrate and then heated. In this process, the temperature
plays a crucial role in the nucleation and growth of 2D PbI2 NSs,
since the amount of nucleation sites is controlled by tempera-
ture. Subsequently, MAPbI3 NSs were formed after the conver-
sion reaction with MAI.84 During the vapor-phase growth, the
growth pressure and temperature both could affect the formation
of perovskite NCs. Liu et al.64 fabricated 2DMAPbBr3 platelets
(001) via the CVD method. As shown in Fig. 5(j), the square-
shaped platelets could not form, as the growth pressure and tem-
perature were low. By increasing the pressure, 2D platelets and
3D spheres could be observed. The average thickness of
MAPbBr3 platelets increased from 29 to 73 nm, and the lateral
size increased from 6 to 10 μm with the pressure increasing
from 140 to 200 Torr.64

As for all-inorganic 2D perovskite NCs, Zeng and coworkers85

synthesized ultrathin CsPbBr3 NPs (thickness ∼148.8 nm) on
a mica substrate by van der Waals epitaxy through heating the
PbBr2 and CsBr mixture. Zheng et al.86 synthesized 2D CsPbI3
perovskite NSs with high quality, controllable morphology, and
ultrathin thickness (∼6.0 nm) via a space-confined vapor-phase
epitaxial growth. In 2020, Yang and coworkers developed a facile
method to pattern CsPbX3 plate arrays with crystal size (200 nm

to 1 μm) and spacing (2 to 20 μm). These plate arrays were
confined by prepatterned hydrophobic/hydrophilic surfaces.65

The method can evade the restriction of lattice matching between
perovskite and substrates, enabling a large-area growth of 2D per-
ovskite NCs with excellent crystalline quality.85

2.4.2 Metasurface

A metasurface is a type of 2D optical element composed of
units with subwavelength scale size, producing resonant cou-
pling between electric and magnetic components of the incident
electromagnetic fields.87–91 Several functionalities were demon-
strated on all-dielectric metasurfaces, such as optical encoding,
optical wavefront molding, polarization beam splitter, and en-
hanced PL.92–94 Perovskite-based metasurfaces demonstrated
potential for nonlinear absorption and optical encoding.95

Metasurfce structures can be realized by nanopatterning thin
film. Many conventional nanofabrication techniques have been
used for the fabrication of perovskite metasurfaces, such as
nanoimprinting, electron beam lithography (EBL), focused
ion beam milling (FIB), and inductively coupled plasma etching
(ICP).90,94,96–98

Gholipour et al.97 first used the FIB technique to fabricate
MAPbI3 metasurfaces (thickness ∼200 nm), which consisted
of nanogratings and nanoslit metamolecules. Moreover, they
demonstrated that the emission and quality factor of the

Fig. 5 (a) Schematic of the synthesis of MAPbBr3 NPs. Figures reproduced from Ref. 61.
(b) Quantum size effect in MAPbBr3 NPs. Figures reproduced from Ref. 61. (c) Bandgap tuning
in MAPbBr3 NPs and micro/NRs via size or compositional control. Figures reproduced from
Ref. 61. (d) PL spectra of the halide–anion exchanged CsPbX3 NPs. Figures reproduced from
Ref. 37. (e) 2D CsPbBr3 NSs. Figures reproduced from Ref. 37. (f) SEM images of CsPb2Br5
MP. Figures reproduced from Ref. 78. (g) Top: Schematic of the growth of 2D CsPbX3 NPs
and NSs from CsPbX3 NRs. Bottom: TEM images of CsPbBr3 NCs for different times. Figures
reproduced from Ref. 79. (h) Schematic of the fabrication of MAPbI3 NCs using a vapor-transport
system. Figures reproduced from Ref. 80. (i) Thickness of PbI2 platelets before and after being
converted to MAPbI3. Figures reproduced from Ref. 80. (j) Optical images of as-grown MAPbI3
NCs with different temperature and pressure. Figures reproduced from Ref. 64.
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reflection resonances can be tuned by varying the grating
period.97 Makarov et al.98 developed nanoimprinting technology
for patterning CsαFAβMAγPbðIxBryÞ3 metasurfaces, enabling
them to enhance their linear and nonlinear PL [Figs. 6(a)–
6(d)]. After the spin-coating of the perovskite film with thick-
ness of ∼200 nm, nanoimprinting with nanopillar and nano-
stripe molds was performed on perovskite thin film to form
metasurfaces. They demonstrated that these metasurfaces can
enhance linear PL eight times and nonlinear PL 70 times.98

Jeong et al.94 presented a polymer-assisted nanoimprinting
method for fabricating large-area CsPbX3 nanopatterns. As
shown in Fig. 6(e), during their nanoimprinting process, a pre-
cursor solution was spin-coated on a substrate initially, and then
the nanoimprinting mold was pressed on the precursor film with
thermal treatment subsequently. Thus, CsPbX3 was crystallized
within the confines of molds [Fig. 6(f)]. This method could be

easily extended to large-area perovskite patterns on different
substrates.94 In addition, Fan et al.90 used the EBL flowed
ICP technique to prepare near-infrared MAPbBr3 perovskite
metasurfaces [Fig. 6(g)]. Based on these metasurfaces, many
types of nonlinear processes and enhanced PL could be ob-
served [Fig. 6(h)].90 The authors presented the application of
perovskite metasurfaces on optical encryption.90 The perovskite
metasurface also can be used in optical phase control, which
was confirmed by Zhang et al. in 2019. They also used the
EBL flowed ICP technique to prepare MAPbX3 cut-wire meta-
surfaces on metal substrates [Figs. 6(i) and 6(j)].96 They found
that these MAPbX3 metasurfaces can generate a full phase con-
trol from 0 to 2π and high-efficiency and broadband polariza-
tion. Finally, they proved the potential application in
holographic images based on the unique property of perovskite
metasurfaces.96

Fig. 6 (a) Perovskite metasurfaces with enhanced emission. Figures reproduced from Ref. 98.
SEM images of perovskite with (b) nanostripe and (c) nanohole structures. Figures reproduced
from Ref. 98. (d) Enhanced PL spectra from perovskite metasurfaces with different structures.
Figures reproduced from Ref. 98. (e) Schematics of the polymer-assisted nanoimprinting process
for perovskite nanopatterns. Figures reproduced from Ref. 94. (f) SEM images of various perov-
skite nanopatterns. Figures reproduced from Ref. 94. (g) SEM images of MAPbBr3 metasurface
for nonlinear imaging. Figures reproduced from Ref. 90. (h) The nonlinear PL and linear PL
images of MAPbBr3 metasurfaces. Figures reproduced from Ref. 90. (i) SEM image of MAPbBr3
metasurface. Figures reproduced from Ref. 96. (j) The field distributions of MAPbBr3 perovskite
metasurface. Figures reproduced from Ref. 96.
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2.5 3D Metal Halide Perovskite Nano/Microstructures

Besides 1D and 2D structured-perovskite, perovskite-based
3D structures have also been investigated. In 2017, a two-step
method for the fabrication of CsPbX3 microcubes with sub-
wavelength size was developed by Hu et al.99 These CsPbX3

microcubes had a regular cube shape and smooth end faces,
displaying tunable emission and excellent structure stability
for several months under ambient conditions. In the same year,
Zhang and coworkers used the CVD method on the prepared
CsPbX3 MSs with controlled diameter of ∼1 μm and tunable
PL ranging from 425 to 715 nm [Figs. 7(a) and 7(b)].100 Wei
et al.101 developed an automated microreactor system to fabri-
cate an inorganic perovskite NCs sphere by UV photoinitiated

polymerization in flow-focusing microfluidics [Figs. 7(c) and
7(d)]. These obtained CsPbBr3 spheres had a large diameter
around 100 μm, and the diameter could be influenced by flow
rates.101 Mi et al.102 used the CVD method to fabricate high-
quality single MAPbBr3 crystals with a cube-corner pyramids
shape and lateral dimension in the range of 2 to 10 μm on mica
substrates [Fig. 7(e)]. Then, Yang et al.103 also used the CVD
method to fabricate CsPbI3 triangular pyramids with a sponta-
neous emission of ∼719 nm at room temperature on a Si∕SiO2

substrate [Fig. 7(f)].
Except for the regular morphologies, complex perovskite

structures have also been investigated. Chen et al.104 used a
seed-mediated solvothermal method to fabricate monodisperse
CsPbX3 NCs with nanoflower morphology [in Figs. 7(g)–7(i)].

Fig. 7 (a) SEM image of the CsPbI3 MSs. Figures reproduced from Ref. 100. (b) PL spectra of
CsPbCl3, CsPbBr3, and CsPbI3 MSs. Figures reproduced from Ref. 100. (c) Monodispersed
CsPbBr3 spheres under the excitation of UV light. Figures reproduced from Ref. 101. (d) SEM
image of the monodispersed CsPbBr3 spheres. Figures reproduced from Ref. 101. (e) SEM image
of the MAPbBr3 triangular pyramids. Figures reproduced from Ref. 102. (f) SEM image of the
CsPbI3 triangular pyramids on a Si∕SiO2 substrate. Figures reproduced from Ref. 103.
(g) SEM image and (h) schematic of the formation of CsPbX3 nanoflowers. Figures reproduced
from Ref. 104. (i) Photograph (upper) and PL emission spectra (bottom) of CsPbX3 nanoflowers.
Figures reproduced from Ref. 104. (j) Crystal growth of MAPbBr3 cuboids (top) and SEM images of
MAPbBr3 perovskite under different reaction time (bottom). Figures reproduced from Ref. 105.
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Figure 7(h) shows the growth process of CsPbBr3 nanoflowers,
which is formed by the structure transformation from Cs4PbBr6
to CsPbBr3. It is obtained that CsPbX3 dodecapods contained
12 well-defined branches, with a PLQY of about ∼50%.
Moreover, the PL emission could be tuned from 415 to 685 nm.
They prepared a white LED device based on using CsPbBr3
nanoflowers, exhibiting the 135% National Television System
Committee (NTSC) standard.104 In 2019, Li et al. fabricated
single crystal microcuboid-MAPbBr3 and multistep-MAPbBr3
NCs via the solvothermal method at 120°C. In this process, mi-
crocuboid-MAPbBr3 was formed initially, and then the center of
the surface was etched after long-time reaction, inducing the
formation of multisteps. By adjusting the reaction temperature
and time, the morphology and size of microcuboid-MAPbBr3
[Fig. 7(j)] could be adjustable, with performing potential in per-
ovskite nanolaser and other optoelectronic devices.105

3 Perovskite-Based Laser

3.1 Nonlinear Optical Properties

Nonlinear optics describes the nonlinear state of the interaction
between light and matter.106–111 The researches on optical
nonlinear materials are fundamental to nonlinear optics devices
such as optical storage, optical switches, optical amplifiers, and
lasers.112–114 Due to the multiformity of physical and chemical
properties, halide perovskites have been demonstrated as prom-
ising materials as nonlinear optics materials, which are related to
the component and crystal structure of perovskite NCs.106

In 2015, Sargent and coworkers investigated two-photon
absorption in MAPbBr3 single crystals, under ultrashort pulses
800 nm excitation [Figs. 8(a)–8(d)]. They observed two-
photon PL around ∼572 nm with an absorption coefficient of
8.6� 0.5 cmGW−1 at 800 nm.117 Later, Heiko et al. performed

temperature-dependent PL measurements on MAPbBr3 single
crystals under 810 nm excitation. They observed obvious wave-
length shifts of PLs with variable temperatures, which was
attributed to discrete transitions between several stable crystalline
phases of MAPbBr3 single crystals.

115 In 2016, Kalanoor et al.
studied the nonlinear optical responses of MAPbI3 films by the
Z-scan technique, under nanosecond and femtosecond pulsed
lasers. The nonlinear refractive index under femtosecond exci-
tation was ∼69 × 10−12 and ∼34.4 × 10−9 cm2∕W for resonant
nanosecond excitation, which was equivalent to conventional
semiconductors.118 The Z-scan study of MAPbX3 (X = Cl,
Br, I) perovskite film under the 800 nm, 40 fs pulse indicated
that MAPbI3 films have a relatively large nonlinear optical co-
efficient compared with theMAPbCl3 andMAPbBr3 films.119 In
the case of inorganic perovskites, Sun and coworkers discovered
nonlinear optical properties of CsPbX3 NCs for the first time
[Figs. 8(e)–8(g)]. They observed strong two-photon absorption
from 9-nm-sized CsPbBr3 NCs, with a large absorption cross-
section of ∼1.2 × 105 GM.116 The nonlinear optical properties
of CsPbX3 perovskite are highly correlated with their morphol-
ogy. Jiang and coworkers120 investigated nonlinear optical
properties of CsPbBr3 NSs with a dependence on their thick-
ness. When the thickness of CsPbBr3 NS was adjusted from
∼104.6 to ∼195.4 nm, PL intensity increased nearly three times.
They demonstrated that the two-photon absorption coefficient
is inversely proportional to the thickness of CsPbBr3 NSs.120

Krishnakanth et al. investigated nonlinear optical properties
from nanocubes and NRs by Z-scan technology, under femto-
second 600, 700, and 800 nm lasers. They obtained large
two-photon absorption cross sections of ∼105 GM and strong
nonlinear optical susceptibility of ∼10−10 esu in these films.121

The laser is a process of amplifying optical signals and gen-
erating high-intensity coherent light through stimulated radia-
tion and is usually composed of three parts: energy pumping

Fig. 8 (a) Absorption spectrum and normalized two-photon PL spectra of single MAPbBr3 NCs.
Figures reproduced from Ref. 115. (b) Schematic of two-photon absorption at 800 nm in
perovskite. Figures reproduced from Ref. 115. (c) Two-photon absorption coefficient. (d) Inverse
transmission versus peak intensity for typical single MAPbBr3 NCs. Figures reproduced from
Ref. 115. (e)–(g) Nonlinear optics of CsPbX3 NCs: (e) linear absorption spectrum and normalized
PL spectra from CsPbBr3 NCs, (f) PL decay of CsPbBr3 NCs, and (g) Z-scan responses of the
CsPbBr3 NC solution and the pure solvent. Figures reproduced from Ref. 116.
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source, gain medium, and optical resonator. The amplification
of the laser can be quantified as the resonance ability of gain
media.122,123 For gain media, the optical gain of the semiconduc-
tor is similar to the optical absorption, which is suitable for
perovskite.124,125 At the same time, optical losses are generated
in optical cavities, which mainly come from nonradiative
recombination, phonon scattering, edge scattering, and field
leakage in the interface of cavities.126 Perovskite materials have
ultralow density, inducing high optical gain and low optical
losses for resonance in perovskite, enabling promising potential
in perovskite lasers with low threshold. The optical gain of
semiconductors can be calculated by the variable-stripe-length
measurement, which is related to the dependence of the
amplified luminescence on the length of the slit width of the
excitation. Xing et al.23,124 performed variable stripe length mea-
surements on MAPbI3 with a gain coefficient of ∼250 cm−1,
which was close to that of conventional semiconductor materi-
als. The obtained optical gain coefficients of MAPbBr3 and
MAPbCl3 were ∼300 and ∼110 cm−1, respectively.127,128 Liu
et al.129 demonstrated that the optical gain coefficient of
CsPbBr3 nanocuboids can be calculated to be ∼502 cm−1 under
the 800 nm laser. Then, Zhao et al. reported efficient two-photon
ASE from CsPbBr3 single crystals with a millimeter size and
an optical gain of 38 cm−1.130

3.2 Perovskite QDs Laser

In the case of perovskite QDs without an external cavity, the
amplification was generated from multiple scattering between
QDs, enabling random fluctuations of lasing modes.127 In
2015, Kovalenko and coworkers reported low-threshold ASE
from colloidal CsPbX3 NCs with an optical gain coefficient
of ∼450 cm−1 and threshold of ∼5 μJ∕cm2.127 In Figs. 9(a)–
9(c), the ASE from CsPbX3 NCs could be tuned from 440 to
700 nm. Finally, they obtained random lasing from CsPbX3

films without the resonant cavity and whispering gallery mode
(WGM) lasing using a silica sphere as the resonant cavity
[Fig. 9(c)].127 Besides, coating perovskite QDs onto an external
cavity, Zeng and coworkers developed another method to form
resonant cavities for perovskite QDs. They obtained enhanced
random lasing from strong scattering in the perovskite∕SiO2

composite with low threshold of ∼40 μJ∕cm2 [Figs. 9(d)–
9(f)].131 Similarly, Yang et al.136 realized upconversion random
lasing from FAPbBr3∕A-SiO2 composites with a threshold of
∼413.7 μJ∕cm2. Liu et al.137 obtained WGM and random lasing
with a threshold of ∼430 μJ∕cm2 under 800 nm excitation by
embedding CsPbBr3 QDs into a single silica sphere. In addition,
microcapillary tubes can also be used to build WGM cavities for
perovskite QDs. In 2015, Zeng and coworkers observed lasing
emission from CsPbBr3 QDs by filling the CsPbBr3 QDs into a
capillary tube, which acted as aWGM cavity for perovskite QDs
film around the inner wall.138 Later, stable two-photon pumped
WGM lasing was realized by coupling CsPbBr3 and FAPbBr3
perovskite QDs into microtubules with thresholds of ∼0.8 and
∼0.31 mJ∕cm2 [Figs. 9(g)–9(j)], respectively.132,139

Besides the realization of perovskite QDs lasing-based silica
sphere and microcapillary tube, the well-designed distributed
Bragg reflector (DBR) can also be used to achieve a vertical-
cavity surface-emitting laser (VCSEL).133–135 In 2017, Zeng
and coworkers first fabricated VCSELs with a sandwiched
structure of DBR∕CsPbBr3 QDs/DBR, which exhibited a low

threshold ∼9 μJ∕cm2 directional output and favorable stability
[Fig. 9(k)].133 The lasing emission of CsPbX3-based VCSELs
can be tuned in the visible light range.133 In the same year,
Huang et al.134 fabricated CsPbBr3 QDs VECSLs with
ultralow threshold of ∼0.39 μJ∕cm2 [Fig. 9(l)]. Organic hybrid
perovskites-based VCSELs have also been performed. Chen
and Nurmikko135 developed FAPbBr3-based VCSELs by em-
bedding FAPbBr3 solid thin films in two DBRs [Fig. 9(m)] with
a threshold of ∼18.3 μJ∕cm2 under subnanosecond pulse exci-
tations. They also demonstrated that the VCSEL device fabri-
cation process can be applicable to flexile substrates, as
shown in Fig. 9(m), which extended further practical applica-
tions for perovskite-based laser devices.135 Most recently, Li
et al.140 fabricated a two-photon-pumped MAPbBr3 VCSEL
by intergrading MAPbBr3 with DBR and Ag mirrors with a
threshold of ∼421 μJ∕cm2, a Q factor of ∼1286, and a small
divergence of ∼0.5 deg.

3.3 Perovskite Nanowire/Nanorod Laser

Owing to the difference between the refractive index of perov-
skite material and air, the reflection can occur at the output
interface easily, acting as optical reflector.141,142 Hence, different
from QDs, single perovskite crystals structures such as rods,
wires, plates, cubes, and spheres can act as Fabry–Pérot (F-P)
or WGM cavities by themselves, since the light can be confined
in the resonant cavity with regular morphology and smooth end
faces.125 For the 1D NWs structure, light will propagate along
1D and form resonance between two end-facets.143 Hence,
perovskite NWs and NRs have been confirmed as potential
structures in optoelectronic devices and nanoscale-integrated
photonics due to their unique optical properties, such as highly
coherent output and efficient waveguide effect.143

Zhu et al.144 demonstrated perovskite NW lasers using high-
quality MAPbX3 NWs, which had a regular shape with rectan-
gular cross section [Fig. 10(a)]. Tunable F-P lasing could be
observed from single MAPbX3 NWs with low threshold of
∼0.22 μJ∕cm2 and Q factor of ∼3600 at room temperature
[Figs. 10(b) and 10(c)]. In the same year, Xing et al.49 realized
F-P lasing from MAPbI3 NWs with rectangular morphology
and length of ∼20 μm. The obtained NW laser exhibited low
threshold of ∼11 μJ∕cm2 and Q factor of ∼405, and the lasing
wavelength could be tuned in the range of 551 to 777 nm.49

In case of lasing from all-inorganic perovskite NWs, Yang and
coworkers realized F-P lasing from CsPbBr3 NWs with a thresh-
old of ∼5 μJ∕cm2 and a Q factor of ∼1009.55 Fu et al. realized
wavelength widely tunable F-P lasing from CsPbX3 NWs. The
lasing wavelength could be tuned in the visible spectral region
from 420 to 710 nm [Figs. 10(e)–10(g)].145 In 2017, lasing
emission from triangular CsPbX3 micro/NRs with an ultra-
smooth surface by the vapor-phase approach was reported.
The obtained lasing could be tuned in the range from 428 to
628 nm, with low threshold of ∼14.1 μJ∕cm2 and high Q factor
of ∼3500.75 Efficient multiphoton pumped lasing in a wide ex-
citation wavelength range (700 to 1400 nm) was realized.147

Most of the single perovskite NWs mainly exhibited single-
band lasing emission. In 2020, Tang et al. fabricated a single
CsPbCl3−3xBr3x alloy NW via a solid–solid anion-diffusion pro-
cess. They realized continuous F-P lasing in single as-prepared
NWs, which could be tuned from 480 to 525 nm [Figs. 10(i)
and 10(j)].146
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3.4 Perovskite Nano/Microplate Laser

Different from the F-P cavity formed by NWs/NRs, the perov-
skite 2D structure such as NPs will result in the WGM optical
resonant cavity, which has a higher Q factor than the F-P cavity.
In 2014, Zhang et al. first realized WGM lasing from MAPbI3
NPs with well-defined hexagonal and triangular shapes under
femtosecond-pulsed laser excitation. The lasing wavelength was
located at∼780 nmwith a threshold of∼37 μJ∕cm2 [Figs. 11(a)–
11(d)].80 Liao et al.150 obtained single-mode WGM lasing from
single MAPbBr3 MDs peaked at ∼557.5 nm with a threshold
of ∼3.6 μJ∕cm2 and Q factor of ∼430. Liu et al. realized
WGM lasing from MAPbI3 MP arrays with low threshold of

∼11 μJ∕cm2 and Q factor of ∼1210.151 Moreover, they observed
single mode lasing by shortening the size of MPs.151 Qi et al.152

demonstrated that the threshold of theMPs laser decreases linearly
depending on the later size, and the cavity mode density increases
with the size. In 2019, WGM lasing from a triangular MAPbI3
perovskite NP with a lateral length of 27 μm and thickness
of 80 nm was realized at room temperature. The threshold of
the WGM laser was ∼18.7 μJ∕cm2 and Q factor was ∼2600
[Figs. 11(e)–11(i)].148

As for the 2D all-inorganic perovskite-based laser, Zhang
et al.149 obtained WGM excitonic lasing from single-crystalline
CsPbX3 NPs with micron-size length and subwavelength
thickness [Figs. 11(j)–11(m)]. Multicolor lasing from 410 to

Fig. 9 (a) TEM images of CsPbBr3 QDs. Figures reproduced from Ref. 127. (b) Spectral tunability
of ASE of CsPbX3 via compositional modulation. Figures reproduced from Ref. 127. (c) Evolution
from PL to lasing in an MS resonator with increasing pump intensity. Figures reproduced from
Ref. 127. (d) SEM image and (e) isolation effect of CsPbBr3 QDs∕A-SiO2 composites. Figures
reproduced from Ref. 131. (f) PL spectra from CsPbBr3 QDs∕A-SiO2 composite with increasing
pump intensity. Figures reproduced from Ref. 131. (g) TEM image of FAPbBr3 QDs. (h) Two-
photon PL spectra from FAPbBr3 NCs in a microcapillary tube. (i) Optical image and (j) lasing
emission spectra from FAPbBr3 NCs in a microcapillary tube. Figures reproduced from Ref. 132.
(k) Left: PL spectra from CsPbBr3 film within/without microcavity. Right: Schematic of the CsPbBr3
VCSEL. Figures reproduced from Ref. 133. (l) Schematic of the CsPbBr3 VCSEL. Figures repro-
duced from Ref. 134. (m) Photograph and PL stability of flexible FAPbBr3 VCSEL. Figures repro-
duced from Ref. 135.
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700 nm was realized in these NPs at room temperature
[Fig. 11(l)]. The lasing threshold of the CsPbX3 NP was as
low as ∼2.0 μJ∕cm2, and the linewidth of the WGM modes was
∼0.14 to 0.15 nm [Fig. 11(m)].149 Zheng et al.86 demonstrated
that CsPbI3 perovskite NSs possess WGM lasing under both
one- and two-photon pumps with low-threshold-pumped excita-
tion [Figs. 11(n)–11(q)]. The thresholds of lasing were∼0.30 and
∼2.6 mJ∕cm2 under one- (470 nm) and two-photon (1200 nm)
excitation, and the Q factors were ∼1489 and ∼1179, respec-
tively, which is three times higher than the reported values of
organic–inorganic lead halide perovskite NS. Most recently,
Liu et al.153 realized two lasing modes (F-P and WGM) in the
all-inorganic perovskite CsPb2Br5 MPs with subwavelength
thickness and uniform square shape under two-photon pump.
Remarkably, low-threshold F-P multimode lasing with Q factor
of ∼3551 and single-mode WGM lasing withQ factor of ∼3374
from the same MP at room temperature have been achieved
successfully.

3.5 Perovskite Laser with 3D Structure

A single perovskite spherical 3D structure has also usually been
demonstrated as a WGM cavity. In comparison with other nano/
microstructure resonant cavities, the coupling between the
sphere cavity and substrate was relatively weak, which resulted
in less optical losses. Zhang and coworkers realized single-
mode lasing in CsPbX3 MSs with regular sphere shape and
submicron size at room temperature [Figs. 12(a)–12(d)].100

The line width of WGM lasing was ∼0.09 nm, the threshold
was ∼0.42 μJ∕cm2, and Q factor was ∼6100 [Fig. 12(c)]. In
addition, the single-mode lasing can be tuned in the whole
visible region through element modulation and size control of
perovskite MSs [Fig. 12(d)].100 Furthermore, they achieved two-
photon single-mode lasing with linewidth of ∼0.037 nm and
Q factor of ∼1.5 × 104 from a single CsPbBr3 MS at room tem-
perature, which are the best values obtained in perovskite-based
micro/nanocavities until now.154 Moreover, these perovskite MS
lasers showed uniform lasing emission, which could be
observed in the range from −30 deg to 30 deg.154,155

Another 3D structure generally used for perovskite lasing is
the nano/microcube. Liu et al.129 obtained F-P lasers from an
individual CsPbBr3 nanocuboid with subwavelength scale for
the first time [Figs. 12(e)–12(h)]. They realized single-mode
F-P lasing from a CsPbBr3 nanocuboid with low thresholds
of ∼40.2 and ∼374 μJ∕cm2 and Q factors of ∼2075 and ∼1859
under one- and two-photon pumps, respectively.129 The physical
volume of the obtained laser is ∼0.49 λ3. Moreover, the pulse
duration is only ∼22 ps, which is consistent with the resulting
fast decay of SE observed by fs transient absorption spectros-
copy [Fig. 12(h)].129 Cube-corner pyramid cavities could also
act as microretroreflectors. In 2018, Mi et al. realized F-P
lasing in cube-corner MAPbBr3 pyramids at room temperature
[Figs. 12(i)–12(m)].102 Furthermore, the threshold of lasing
could be reduced from ∼92 to 26 μJ∕cm2 by coating a thin layer
of Ag film on a mica substrate [Figs. 12(l) and 12(m)].102 Most
recently, Yang et al.103 also realized F-P lasing from a single

Fig. 10 (a) SEM of MAPbI3 nanostructures. Figures reproduced from Ref. 144. (b) Optical image
of single MAPbI3 NW. Figures reproduced from Ref. 144. (c) PL spectra of MAPbI3 NW around the
lasing threshold. Figures reproduced from Ref. 144. (d) Broad tunable lasing from single-crystal
MAPbX3 NW. Figures reproduced from Ref. 144. (e) SEM image of CsPbBr3 nanostructures.
Figures reproduced from Ref. 145. (f) Fluorescence images of red/green/blue CsPbX3 NWs above
lasing threshold. Figures reproduced from Ref. 145. (g) Broad tunable lasing from single-crystal
CsPbX3 NWs. Figures reproduced from Ref. 145. (h) The photograph and PL spectra of a single
CsPbCl3−3xBr3x NW. Figures reproduced from Ref. 146. (i) The schematic of optically pumping
lasing from a single CsPbCl3−3xBr3x NW. Figures reproduced from Ref. 146. (j) Typical lasing
spectra from a single CsPbCl3−3xBr3x NW. Figures reproduced from Ref. 146.
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CsPbI3 triangular pyramid with a microsize at low temperature.
They demonstrated that the temperature-dependent lasing
threshold can be reduced from ∼53.15 to 21.56 μJ∕cm2 with
corresponding temperature from 223 to 148 K.103

3.6 Perovskite Nanolaser Array

In comparison with single perovskite lasers, laser arrays with
high-density patterns and high-precision arrangements are more

necessary for mass-produced, compact on-chip optoelectronic
circuit integration. In 2016, Wang et al. fabricated MAPbBr3
microwire arrays and realized high density perovskite lasers
from these microwire arrays [Figs. 13(a) and 13(b)], in which
all of the subunits generated the same lasing emission.156 The
minimum unit period was 800 nm, presenting an integration
density of nanolasers as high as 1250 mm−1. In 2017, Fu and
coworkers prepared MAPbBr3 NW arrays with the width from
460 to 2500 nm, height from 80 to 1000 nm, and length from

Fig. 11 (a) Schematic of an MAPbX3 NP pumped by a pulsed laser. Figures reproduced from
Ref. 80. (b) Optical image of MAPbI3 NPs under white light and laser excitation. Figures repro-
duced from Ref. 80. (c) Lasing spectra of hexagonal MAPbI3 NPs (upper) and the lasing mode
evaluation with pumping fluence (bottom). Figures reproduced from Ref. 80. (d) Upper: Lasing
spectra of triangular MAPbI3 NPs with different edge length. Bottom: The wavelength of lasing
modes and Q-factor as a function of the triangular cavity edge length. Figures reproduced from
Ref. 80. (e) Schematic of triangular MAPbI3 NPs pumped by a 343 nm laser. Figures reproduced
from Ref. 148. (f) Optical image of triangular MAPbI3 NPs. Figures reproduced from Ref. 148.
(g) 2D plot of a triangular MAPbI3 NP emission under different pump densities. Figures reproduced
from Ref. 148. (h) The emission spectra from MAPbI3 NPs around the lasing threshold. Figures
reproduced from Ref. 148. (i) Output emission intensity as a function of pump densities. Figures
reproduced from Ref. 148. (j) Schematic of a CsPbX3 plate under a 400 nm laser. Figures repro-
duced from Ref. 149. (k) Emission spectra at different pump intensities. Figures reproduced from
Ref. 149. (l) Tunable lasing spectra and images of individual CsPbX3 perovskite NPs. Figures
reproduced from Ref. 149. (m) Single-mode lasing of CsPbBrx I3−x . Figures reproduced from
Ref. 149. (n) Schematic of a CsPbI3 NS on mica substrate. Figures reproduced from Ref. 86.
Excitation intensity-dependent emission spectra under (o) 470 nm and (p) 1200 nm excitation.
Figures reproduced from Ref. 86. (q) Gaussian fitting of a lasing mode under 470 and 1200 nm
laser. Figures reproduced from Ref. 86.
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10 to 50 μm. These perovskite NWarrays were demonstrated as
almost identical optical resonance cavities with a low threshold
of ∼10.2 μJ∕cm2 [Figs. 13(c) and 13(d)].157 In 2016, Liu et al.
realized WGM lasing from patterned MAPBI3 microplatelets
arrays with a threshold of ∼11 μJ∕cm2 and Q factor up to
∼1210. The wavelength tunability and single mode lasing could
be selected by changing platelet sizes or breaking the symmetry
of the designed laser pattern.151 In the same year, Feng et al.158

demonstrated that the MAPbBr3 square MP array shows high-
performance WGM lasing with tunable mode and low lasing
threshold [Figs. 13(e) and 13(f)]. Single mode lasing was ob-
tained from a 2.1-μm MAPbBr3 square. Lin et al.159 fabricated
a large-area CsPbX3 QDs array by a photolithographical ap-
proach, which could be used as efficient lasing structures and
emitting pixel arrays [Figs. 13(g)–13(i)]. They realized WGM
lasing from the QD arrays with high Q factor and demonstrated
that this patterning technique can be used in large-area perov-
skite laser arrays with multicolor pixels [Fig. 13(g)].159 Most re-
cently, Wang et al.160 fabricated large-area MAPbX3 MD arrays
via a screen-printing technique [Figs. 13(j)–13(m)]. They ob-
tained tunable WGM lasing from these MAPbX3 MD arrays
with a threshold of ∼21.3 μJ∕cm2 and a Q factor of ∼1570 suc-
cessfully. Multicolor WGM lasing emission could be tuned from
∼510 to 650 nm [Fig. 13(l)].160 In 2020, Song and coworkers
employed the topologically protected optical bounded states
in the continuum (BICs) and demonstrated the ultrafast control
of perovskite-based vortex microlasers at room temperature.

They proved that vortex beam lasing based on perovskite meta-
surfaces could be switched to linearly polarized beam lasing
with switching time of 1 to 1.5 ps. The energy consumption
was several orders of magnitude lower than that of previously
reported all-optical switching.161

3.7 Others

Surface-plasmon (SP) is an excited state with large enhancement
of the electromagnetic field localized at the metal–dielectric in-
terface, which provides confinement on the subwavelength
scale, overcoming the diffraction limit of light.162 In perovskite
micro/nanolasers, SPs have been demonstrated as an effective
method to tailor the properties of lasers. In general, SPs could
be generated by the metal layer, such as Au or Ag, and transfer
along the semiconductor–metal interface. Kao et al.163 reduced
the lasing threshold of perovskite by strong exciton–plasmon
coupling between the Ag and perovskite films [Fig. 14(a)],163

in which the confined optical fields between Ag and perovskite
films could be enhanced about 19.3 and 7.7 times in comparison
with bare perovskites and perovskites coated by Ag thin film,
respectively. In 2017, Wang et al. deposited Al nanoparticles
onto the surface of CsPbBr3 perovskites. The lasing thresholds
of CsPbBr3 perovskite microrods were significantly reduced by
>20%, and the output intensities were significantly enhanced
via the plasmonic resonances.172 In 2019, Wu et al. reported
a method to enhance ASE performance of MAPbI3 films by

Fig. 12 (a) Schematic of a single CsPbBr3 MS under 400 nm laser. Figures reproduced from
Ref. 100. (b) Lasing PL spectra from a single CsPbBr3 MS under different pump intensities.
Figures reproduced from Ref. 100. (c) Lorentzian fitting of a lasing mode. Figures reproduced
from Ref. 100. (d) Photograph and lasing emission of multicolor CsPbX3 MS lasers. Figures re-
produced from Ref. 100. (e) SEM image and (f) schematics of F-P cavity of CsPbBr3 nanocuboids.
Figures reproduced from Ref. 129. (g) Single-mode lasing spectra and (h) TA spectroscopic
data of CsPbBr3 nanocuboids under two-photon excitation. Figures reproduced from Ref. 129.
(i) Schematic of a cube-corner MAPbBr3 pyramid under 405 nm laser. Figures reproduced from
Ref. 102. (j) PL spectra of a cube-corner MAPbBr3 and (k) output intensity as a function of
excitation power. Figures reproduced from Ref. 102. (l), (m) Multimode lasing spectra of a cube-
corner pyramid of MAPbBr3 on (l) mica and (m) mica/Ag. Figures reproduced from Ref. 102.
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adding Au NRs-doped PMMA on MA3PbI3 perovskite films.
The ASE threshold was significantly reduced by ∼36%, and
the output intensity increased by 13.9-fold with the plasmon
resonance enhancement of Au NRs.173 Yang et al.174 also re-
duced the lasing threshold of CsPbBr3 perovskite nanocubes
significantly by ∼33% via the surface plasmonic effect of
Au nanoparticles. In 2021, single-mode upconversion plas-
monic lasing from MAPbBr3 perovskite NCs was realized by
Lu et al.,164 exhibiting low threshold ∼10 μJ∕cm2 and small
mode volume ∼0.06 λ3 at 6 K, where TiN was used as a prom-
ising resonance adjustable plasmonic platform [Fig. 14(b)].
Hsieh et al.165 realized continuous-wave (CW) lasing from
a single CsPbBr3 QD in a plasmonic gap-mode nanocavity
with low threshold of ∼1.9 W∕cm2 and small mode volume
of ∼0.002λ3 [Fig. 14(c)]. Most recently, Li et al.166 proposed
a hybrid nanocavity composed of CsPbBr3 nanoparticles and
a thin Au film, which could realize optically controlled
quantum size effect by the reversible phase transition from
polycrystalline to monocrystalline [Fig. 14(d)]. These results
demonstrated that SPs could not only modulate the performance
of perovskite lasers but also can realize deep subdiffraction
plasmonic lasers.

Perovskite is also an ideal candidate to realize a room
temperature exciton polariton laser, which mainly results
from the strong exciton–photon coupling between the gain
media and nanocavity. In perovskite laser researches, room
temperature exciton polaritons have been realized with various

nanostructures.167,168,175,176 Perovskite NCs with self-assembled
morphology can provide optical resonators due to the confine-
ment of exciton–photon coupling. On the other hand, a planar
optical cavity composed of two mirrors can be used as an F-P
cavity conventionally. In 2018, Liu et al.167 observed strong
exciton–photon coupling in single CsPbBr3 micro/NWs and
MAPbBr3 micro/NWs, respectively [Fig. 14(e)]. Moreover,
polariton lasing was realized at room temperature with excep-
tionally large vacuum Rabi splitting of ∼656 and 390 meV.167,175

Shang et al.176 proved light could propagate as an exciton–
photon in CsPbBr3 NWs at room temperature, increasing optical
absorption and emission in comparison with bulk crystals.
They demonstrated that the decrease of CsPbBr3 dimensions
could enhance the exciton–photon coupling strength, which
increased the exciton fraction. Furthermore, they found that
the increase of temperature could significantly decrease the ex-
citon fraction of exciton–photons, causing high thresholds and
restraining CW lasing above 100 K. They successfully realized
CW-pumped lasing from CsPbBr3 nanoribbons by reducing
the height to ∼120 nm on sapphires with low threshold of
∼0.13 kW∕cm2 [Fig. 14(f)].168 Then, they coupled MAPbBr3
NWs with a hybrid plasmonic microcavity to enhance exci-
ton–photon interaction.177 They observed a Rabi-splitting up
to ∼564 meV in a hybrid perovskite∕SiO2∕Ag waveguide
microcavity at room temperature. In 2017, Su et al.178 reported
room-temperature polariton lasing based on an epitaxy-free
all-inorganic CsPbCl3 nanoplatelet embedded in DBRs,

Fig. 13 (a) SEM image of the MAPbBr3 microwire on silicon grating. Figures reproduced from
Ref. 156. (b) Laser spectrum of MAPbBr3 microwire. Figures reproduced from Ref. 156. (c) Optical
image of MAPbBr3 NW arrays. Figures reproduced from Ref. 157. (d) PL spectra of a single
MAPbBr3 NW under 400 nm laser. Figures reproduced from Ref. 157. (e) “LASER” patterned per-
ovskite square MPs. Figures reproduced from Ref. 158. (f) Lasing spectra from perovskite MPs
with different sizes. Figures reproduced from Ref. 158. (g) PL image of green and red QD
arrays. Figures reproduced from Ref. 159. (h) Emission intensity versus excitation fluence mea-
sured from a CsPbBr3 MD. Figures reproduced from Ref. 159. (i) Lasing spectra from CsPbBr3
MDs with different diameters. Figures reproduced from Ref. 159. (j) PL spectra from a typical
MAPbBr3 MD with different power energies and (k) output intensity and FWHM as a function
of pump intensity. Figures reproduced from Ref. 160. (l) Widely tunable lasing from MAPbX3

arrays. Figures reproduced from Ref. 160. (m) Left: SEM image of the fabricated perovskite meta-
surface; right: ultrafast control of the quasi-BIC microlasers. Figures reproduced from Ref. 161.
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supporting F-P oscillations. The polariton lasing exhibited a
threshold of ∼12 μJ∕cm2. Zhang et al.169 investigated the trap-
ping of polaritons in micron-sized CsPbBr3 flakes embedded in
DBRs as a microcavity [Fig. 14(g)]. They demonstrated quan-
tized polariton states arising from the optical confinement of
flakes.

In comparison with perovskite NCs with 3D structure, quasi-
2D perovskites have a quantum well (QW) structure with the
advantages of large exciton binding energy and low nonradia-
tion loss and are more easily coupled with a resonant cavity.
In 2018, Fieramosca et al. observed strong exciton–photon
coupling from hybrid 2D perovskite flakes. The organic ligands
efficiently affected the out-of-plane exciton–photon coupling,
suggesting that the organic interlayer plays a significant role in
the anisotropy of the exciton and exciton polariton.179 Then,
they observed highly interacting polaritons in ðPEAÞ2PbI4

with an excitonic interaction constant as ∼3 μeV μm2, which
was two orders higher than that of organic excitons.180 Zhang
et al.181 investigated cavity polariton modes in 2D perovskite
ðPEAÞ2PbBr4 sheets. The perovskite layer naturally could act
as an F-P cavity and exhibited evident cavity polariton modes
with Rabi splitting energy of ∼259 meV. Li et al.170 first
reported room temperature optical gain from 2D perovskite
ðNMAÞ2FAn−1PbnX3nþ1 (NMA ¼ C10H7CH2NH3

þ). In these
layered perovskite nanostructures, multiple QW phases naturally
form an energy cascade, enabling an ultrafast energy transfer
process from higher energy bandgap QWs (n < 5) to lower
energy bandgap QWs (n > 5). They obtained tunable ASE rang-
ing from 530 to 810 nmwith low ASE threshold (<20.0 μJ∕cm2)
[Fig. 14(h)]. Later, lasing based on these quasi-2D perovskite
nanostructure has also been realized by researchers, e.g., Liang
et al. investigated multicolor lasing from ðBAÞ2ðMAÞn−1

Fig. 14 (a) Field intensity distributions and schematic structure of Ag/PMMA/perovskite. Figures
reproduced from Ref. 163. (b) Schematic and working process of plasmonic nanolaser of
MAPbBr3∕Al2O3∕TiN. Figures reproduced from Ref. 164. (c) Schematic and calculated electric
field distribution of plasmonic nanolaser based on CsPbBr3 QDs. Figures reproduced from
Ref. 165. (d) Schematic of phase transition from polycrystalline to monocrystalline CsPbBr3 nano-
particles by adjusting the laser power and the PL spectrum under different laser power. Figures
reproduced from Ref. 166. (e) Schematic polaritons in a micro/NW cavity and lasing spectrum of
CsPbBr3 NWs. Figures reproduced from Ref. 167. (f) Schematic of CW lasing of CsPbBr3 nano-
ribbons. Figures reproduced from Ref. 168. (g) Schematic structure of CsPbBr3 flakes/DBRmicro-
cavity and SEM image of CsPbBr3 flakes. Figures reproduced from Ref. 169. (h) Cascade energy
transfer in quasi-2D perovskite and tunable ASE from solution-processed ðNMAÞ2ðFAÞPb2Bry I7−y
films. Figures reproduced from Ref. 170. (i) Chemical structures of quasi-2D perovskite with differ-
ent organic cations and CW lasing characteristics of quasi-2D perovskite films. Figures repro-
duced from Ref. 171.
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Table 1 Lasing performance of perovskite.

Materials Nanostructure Laser mode Emission wavelength Threshold Year Ref.

CsPbX3 QD on silica sphere WGM 400 to 700 nm 5 to 22 μJ∕cm2 2015 127

CsPbBr3 CsPbX3∕SiO2 composite Random 520 to 530 nm 40 μJ∕cm2 2017 131

FAPbBr3 FAPbX3∕SiO2 Random 540 nm 413.7 μJ∕cm2 2020 136

CsPbBr3 QD in silica sphere Random/WGM 530 nm 430 μJ∕cm2 2019 137

CsPbBr3 QD in capillary tube WGN 530 to 540 nm 11 μJ∕cm2 2015 138

CsPbBr3 QD in capillary tube WGM 535 nm 0.9 mJ∕cm2 2016 139

FAPbBr3 QD in capillary tube WGM 540 to 550 nm 0.31 mJ∕cm2 2019 132

CsPbBr3 DBR∕CsPbBr3QD∕DBR F-P 460 to 650 nm 9 μJ∕cm2 2017 133

CsPbBr3 DBR∕CsPbBr3QD∕DBR F-P 520 nm 0.39 μJ∕cm2 2017 134

FAPbBr3 Flexile DBR∕FAPbBr3 film∕DBR F-P 552.7 nm 18.3 μJ∕cm2 2017 135

MAPbBr3 DBR∕MAPbBr3 film∕Ag F-P 552 nm 421 μJ∕cm2 2020 140

MAPbX3 NWs F-P 500 to 790 nm 0.22 μJ∕cm2 2015 144

MAPbX3 NWs F-P 551, 750, 777 nm 11 μJ∕cm2 2015 49

CsPbX3 NWs and NPs F-P 430, 532, 550 nm 5 μJ∕cm2 2016 55

CsPbX3 NWs F-P 420 to 710 nm 6.2 μJ∕cm2 2016 145

CsPbX3 Micro/NRs F-P 428 to 628 nm 14.1 μJ∕cm2 2017 75

CsPbCl3−3xBr3x NWs F-P 480 to 525 nm 11.7 to 35.0 μJ∕cm2 2020 146

MAPbI3 NPs WGM 780 nm 37 μJ∕cm2 2014 80

MAPbClxBr3−x Microdisks WGM 525 to 558 nm 3.6 μJ∕cm2 2015 150

MAPbI3 Microplatelets WGM 780 nm 12 μJ∕cm2 2016 151

MAPbBr3 Microplates WGM 550 nm 20 μJ∕cm2 2017 152

MAPbI3 Triangular nanoplatelets WGM 780 nm 18.7 μJ∕cm2 2019 148

CsPbX3 Nanoplatelets WGM 400 to 700 nm 2.0 to 10.0 μJ∕cm2 2016 149

CsPbI3 NSs WGM 702 to 725 nm 0.3 mJ∕cm2 2018 86

CsPb2Br5 Microplates F-P 530, 540 nm 230 μJ∕cm2 2020 153

WGM 180 μJ∕cm2

CsPbX3 MSs WGM 425 to 715 nm 0.42 μJ∕cm2 2017 100

CsPbBr3 MSs WGM 520 to 542 nm 203.7 μJ∕cm2 2018 154

CsPbBr3 Nanocuboids F-P 531 nm 40.2 μJ∕cm2 2018 129

MAPbBr3 Pyramids F-P 530 nm 26 μJ∕cm2 2018 102

CsPbI3 Pyramids F-P 720 nm 21.56 to 53.15 μJ∕cm2 2019 103

MAPbBr3 Microwire array F-P 554 nm 5.9 μJ∕cm2 2016 156

MAPbX3 NW array F-P 543 nm 12.3 μJ∕cm2 2017 157

MAPbX3 Microplate array WGM 510 to 780 nm 3.5 μJ∕cm2 2016 158

CsPbX3 QDs array WGM 534 nm 200 μJ∕cm2 2018 159

MAPbX3 Microdisk array WGM 510 to 650 nm 21.3 μJ∕cm2 2019 160

CsPbBr3 CsPbBr3 microrod/Al nanoparticle SP 540 nm 7.24 μJ∕cm2 2017 172

CsPbBrI3 CsPbBr3∕PEDOT∶PSS∕Au
nanoparticle

SP 542 nm 157.6 μJ∕cm2 2018 174

MAPbBr3 MAPbBr3∕Al2O3∕TiN SP 550 nm 10 μJ∕cm2 2021 164

CsPbBr3 Ag∕CsPbBr3∕Al2O3∕Au SP 534 nm 1.9 W∕cm2 2021 165

CsPbBr3 CsPbBr3∕Au SP 495 to 520 nm 2.0 mW 2021 166

CsPbBr3 NWs F-P 520 nm 8 μJ∕cm2 2018 167

MAPbBr3 Micro/NWs F-P 550 nm 15 μJ∕cm2 2018 175

CsPbBr3 Nanoribbons F-P (CW lasing) 2.34 eV 0.13 kW∕cm2 2020 168

CsPbCl3 DBR∕CsPbCl3∕DBR F-P 2.9 eV 12 μJ∕cm2 2017 178
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PbnI3nþ1 (BA ¼ C4H9NH3
þ) in 2019.182 Most recently, Liu et al.

shrank the quasi-2D perovskites laser to the deep-subwavelength
scale with 50 nm, which was the smallest room temperature all-
dielectric laser.183 They revealed the contribution from excitons
and polarons to the high optical gain, which provided an insight
into the design of next-generation integrated laser sources. Qin
et al.171,184 found that the triplet excitons in hybrid quasi-2D per-
ovskite have a lifetime up to 1 μs, which might cause the disap-
pearance of the laser. Then, using a distributed-feedback (DFB)
cavity with a highQ and triplet management strategies, they real-
ized stable room-temperature CW lasing in quasi-2D perovskite
films [Fig. 14(i)]. The representative works about perovskite
lasers in recent years are summarized in Table 1. All of these pro-
gresses prove the potential of perovskite materials in micro/nano-
lasers.

4 Conclusion and Outlook
Over the last few years, tremendous investigations have been
carried out on metal halide perovskite materials, especially stud-
ies of the corresponding physicochemical properties and explo-
ration of relevant applications in optoelectronic devices. In this
review, we summarized the recent developments of the synthesis
strategies, the morphological control, and lasing application of
metal halide perovskite materials. The various synthetic meth-
ods for the fabrication of perovskite NCs have been investigated
in previous researches, including the solution method and
chemical deposition method. Moreover, the morphology of
perovskite NCs can be controlled with different dimensions via
adjusting the reaction conditions. Their structure-related optical
properties were investigated on the single-particle with various
structures as 0D, 1D, 2D, and 3D, enabling their potential in
LEDs, solar cells, photodetectors, and lasers.

In spite of the tremendous advances in perovskite materials
and perovskite-based lasers so far, there are still many issues to
be further solved. The central issue of perovskite materials is
their instability, which is the biggest obstacle for their indus-
trialization. Although enormous work has been performed to
enhance the stability of perovskites, such as the surface ligand
modification or encapsulation method, the instability charac-
teristic of the perovskites still limits their commercial applica-
tions. So far, the mechanisms of their decomposition are not
yet clearly understood, hindering their further performance im-
provements. Another important issue related to lead halide per-
ovskite materials is the urgent trend of reducing or removing
the lead element due to its toxicity. For this purpose, some
strategies have been proposed to constitute lead-free perov-
skites by possible substitutes using either homovalent elements
such as Sn and Ge or heterovalent elements such as Bi and
Sb.185,186 Unfortunately, the optoelectronic properties of lead-

free perovskites have not been effectively improved.
Furthermore, the nucleation and growth mechanisms of perov-
skite NCs are yet to be revealed clearly, which is helpful to
accurately control the morphology of the perovskite NCs
for better understanding structure–property relationships.
Last, but not least, theoretical explanation about the photophy-
sics of perovskite NCs is necessary to better explain the quan-
tum size effects of perovskite crystals, which could guide the
research directions to regulate and control their electronic, op-
tical, and defect properties.

The potential of perovskite materials in laser applications has
been abundantly demonstrated. We reviewed a variety of laser
cavities and summarized the dependence between the resonant
cavity and the structure of perovskite NCs. Various linear and
nonlinear perovskite lasers with an ultralow threshold have been
realized in single perovskite NCs with different dimensions.
Owing to the large gain coefficient and long-distance ambipolar
carrier-transport, perovskites have great potential in electrically
driven lasers, which have huge application value in integrated
optoelectronic devices. But until now, all of the obtained perov-
skite lasers are pumped by laser excitation. The research about
electrically pumped perovskite lasers has not been realized.
Further investigation of resonant cavities, together with further
reduction of the lasing threshold under optical excitation via op-
timization of the material properties, will boost the realization
for electrically driven lasers of perovskites. The future trend of
the perovskite-based laser is to integrate with optoelectronic
components for further waveguide and signal processing. More
importantly, the resonance and gain of perovskite materials and
perovskite-based lasers need photophysical theory, which will
inspire exploring the carrier relaxation and charge transfer proc-
esses of high-performance devices.
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Materials Nanostructure Laser mode Emission wavelength Threshold Year Ref.

CsPbBr3 DBR∕CsPbBr3∕DBR F-P 2.3 eV 0.25 μJ∕cm2 2020 169

ðBAÞ2ðMAÞn−1Pbn I3nþ1 Quasi-2D perovskite flakes F-P 630, 663, 687 nm 4.8 μJ∕cm2 2019 182

PEA2An−1PbnBr3nþ1

(A: MA, Cs)
UV glue/quasi-2D perovskite/glass F-P 539 nm 10.5 μJ∕cm2 2021 183

PEA-FAPbxBry Quasi-2D perovskite on DFB CW lasing 553 nm 32.8 μJ∕cm2 2020 171

NMA-FAPbxBry 555 nm 4.7 μJ∕cm2
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